
On the significance of the area under the after-effect function curve of a magnetic fluid

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2008 J. Phys.: Condens. Matter 20 204108

(http://iopscience.iop.org/0953-8984/20/20/204108)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 29/05/2010 at 12:00

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/20/20
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


IOP PUBLISHING JOURNAL OF PHYSICS: CONDENSED MATTER

J. Phys.: Condens. Matter 20 (2008) 204108 (4pp) doi:10.1088/0953-8984/20/20/204108

On the significance of the area under
the after-effect function curve of a
magnetic fluid
P C Fannin1, C N Marin2 and C Couper1

1 Department of Electronic and Electrical Engineering, Trinity College, Dublin 2,
Republic of Ireland
2 Faculty of Physics, West University of Timisoara, B-dul V Parvan, no. 4,
300223 Timisoara, Romania

E-mail: pfannin@tcd.ie

Received 1 April 2008
Published 1 May 2008
Online at stacks.iop.org/JPhysCM/20/204108

Abstract
The after-effect function, b(t), describes how the magnetization of a dissipative magnetic fluid
decreases with time when a polarizing field, H , is suddenly removed. It is shown that with
increasing H , the rate of decay of b(t) increases and also that the area,

∫ ∞
0 b(t) dt = B , under

each decay curve decreases. Here we investigate the significance of this and by means of a
simple model, show that the normalized function, B/b(0), is in fact equal to the Debye
relaxation time τD. The results of applying the model to theoretically generated data and also to
data obtained from a magnetic fluid sample are presented.

1. Introduction

The after-effect function, b(t), or magnetization decay function
of a magnetic fluid, represents the decay of magnetization after
the removal of an external polarizing magnetic field and can
be related to the frequency dependent complex susceptibility,
χ(ω) = χ ′(ω) − iχ ′′(ω).

b(t) [1, 2] may be obtained from the imaginary, or
dissipative component, χ ′′(ω), by means of the equation

χ ′′(ω)

ω
= 1

2
Re

{∫ ∞

−∞
b(t) exp(−iωt) dt

}

. (1)

The component of equation (1) within the brackets is in fact the
Fourier transform of b(t); thus b(t) can be obtained by carrying
out an inverse Fourier transformation (F−1) on χ ′′(ω)/ω,
where

b(t) = 2 Re
[
F−1

{
χ ′′(ω)/ω

}]
. (2)

Now, there are two distinct mechanisms by which the
magnetization of magnetic fluids may relax after an applied
field has been removed: either by rotational Brownian motion
of the particle within the carrier liquid, with its magnetic
moment, m, locked in an axis of easy magnetization, or by
rotation of the magnetic moment within the particle. The

time associated with the rotational diffusion is the Brownian
relaxation time τB [3] where

τB = 3V η/kT . (3)

V is the hydrodynamic volume of the particle, η is the dynamic
viscosity of the carrier liquid, k is Boltzmann’s constant and T
is the temperature of the system.

In the case of the second relaxation mechanism, the
magnetic moment may reverse direction within the particle by
overcoming an energy barrier, which, for uniaxial anisotropy,
is given by Kv, where K is the anisotropy constant of the
particle and v is the magnetic volume of the particle. The
probability of such a transition is proportional to exp(σ ) where
σ = kv/K T is the ratio of anisotropy energy to thermal
energy. This reversal time is characterized by a time τN, which
is referred to as the Néel relaxation time [4], and given by the
expression

τN = τ0 exp(σ ). (4)

τ0 is a decay time, often quoted as having an approximate value
of 10−8–10−10 s [5].

A distribution of particle sizes implies the existence
of a distribution of relaxation times, with both relaxation
mechanisms contributing to the magnetization. They do so
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Figure 1. Theoretical plot of χ ′(ωH) and χ ′′(ωH).

with an effective relaxation time τeff [6, 7], where, for a
particular particle,

τeff = τNτB/(τN + τB) (5)

the mechanism with the shortest relaxation time being
dominant. In this study, Brownian relaxation is considered to
be dominant.

2. The after-effect function and relaxation time in the
Debye approximation

The frequency dependent complex susceptibility, χ(ω), may
be written in terms of its real and imaginary components,
where χ(ω) = χ ′(ω) − iχ ′′(ω). The theory developed by
Debye [8] to account for the anomalous dielectric dispersion in
dipolar fluids has been successfully used [9] to account for the
analogous case of magnetic fluids.

According to Debye’s theory, the complex susceptibility,
χ(ω), has a frequency dependence given by the equation

χ(ω) − χ∞ = (χ0 − χ∞)/(1 + iωτeff) (6)

where the static susceptibility, χ0, is defined as

χ0 = nm2/3kTμ0 (7)

where μ0 is the permeability of free space and where

τeff = 1/ωmax = 1/2π fmax. (8)

fmax is the frequency at which χ ′′(ω) is a maximum, n is
the particle number density and χ∞ indicates the susceptibility
value at very high frequencies (i.e. f � fmax).

It has been shown that the application of a polarizing field,
H , to the sample results in reductions in both χ ′(ω) and χ ′′(ω)

with increasing biasing field and a corresponding shift in fmax

to higher frequencies [10]. Assuming a Langevin dependence
of the magnetization of the magnetic fluid on the polarizing
fields, H , an expression for χ(ω, H ) can be written as [10]

χ(ω, H ) = g(H )χ∞ + (χ0 − χ∞)g(H )

1 + iωτeff
(9)

with
g(H ) = 3

[
1 + ξ−2 − coth2(ξ)

]
(10)

Figure 2. Plot of b(t)/b(0) as a function of H for the data in
figure 1.

where ξ = m H/kT . Applying the polarizing field parallel to
the alternating field (i.e. the measurement field), in the rigid
dipole approximation, the Brownian relaxation time obeys the
theoretical dependence [11]

τB(H ) = τB
ξ [1 − coth2(ξ) + ξ−2]

coth(ξ) − ξ−1
. (11)

Figure 1 shows plots of theoretically generated Debye type
complex susceptibility data for increasing values of polarizing
field, H , over the range 0 up to 200 A m−1. One can observe
that with increasing H , the low frequency susceptibility, χ0,
decreases and the frequency of the maximum, fmax, increases.

Figure 2 shows the corresponding after-effect functions
obtained by application of equations (9)–(11) to equation (2).
It clearly shows that, with increasing H , the rate of decay of
b(t) increases and also that the area under each decay curve
decreases.

Here in this work we ask the question, ‘what is the
meaning of the area under the decay curve’? In pursuit of
the answer to this question, we consider the Debye case for
which [1]

b(t) = b(0) exp(−t/τD) (12)

where τD is the relaxation time. The area under the after-effect
function is

B = b(0)

∫ ∞

0
exp(−t/τD) dt = b(0)τD. (13)

Consequently this simple analysis shows that the
normalized area under the after-effect function, b(t),
corresponds to the relaxation time of the particles.

3. Testing the model

The theoretical data shown in figures 1 and 2 were initially
used to test the validity of equation (13). Equation (8) shows
the relationship between the frequency of the maximum of
an absorption peak and the relaxation time. The result of
applying this to the absorption peaks of figure 1 is shown in
figure 3. We denote by τm the relaxation time determined from
the relaxation peak by means of equation (8). For comparison
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Figure 3. Plot of τD and τm against H for the theoretical Debye
model.

Figure 4. Plot of χ ′′(ω, H) against f (Hz) with fmax ranging from
790 Hz to 22.4 kHz.

purposes, the value of B/b(0) = τD was determined for each
value of H , and the results obtained are shown in figure 3.
We denote by τD the relaxation time determined from the area
under the plot of b(t)/b(0).

From figure 3 it is readily seen that τm and τD values are
almost identical and therefore confirm the validity of the model
for a system with a single relaxation time. The differences
between τD and τm result from the approximation made in
the numerical evaluation of the inverse Fourier transform on
χ ′′(ω)/ω and of the integral

∫ ∞
0 b(t) dt .

4. Measurements and results

In order to apply the model to practical measurements,
complex magnetic susceptibility measurements, over the
frequency range 50 Hz–1 MHz, were made by means of the
toroidal technique [12] in conjunction with a Hewlett-Packard
RF Bridge 4291A on a colloidal dispersion of cobalt ferrite
particles in Isopar M, with a saturation magnetization of 300 G.
The particle mean radius was 5 nm, whilst the surfactant was
oleic acid.

A high permeability toroid wound with twenty excitation
turns was used. A second coil comprising three turns was also
wound on the toroid and connected to a stabilized DC supply
to provide the biasing magnetic fields, H , with H being varied
over the range 0–13.6 kA m−1.

Figure 5. After-effect functions for the data in figure 4.

Figure 6. Plot of the area under the after-effect curves as a function
of the polarizing field, H .

Figure 4 shows sixteen plots of χ ′′(ω, H ) against ω/2π =
f (Hz), obtained for the sample over the polarizing field range
with the frequency of the maximum, fmax, varying from 790 Hz
to 22.4 kHz. The corresponding values of the relaxation times,
τmeas, were determined by means of equation (8).

The after-effect functions were then obtained from
equation (2) and are shown in figure 5, whilst the
corresponding variation in area is given in figure 6. It should
be noted that, in this case, τeff (equation (5)) replaced τD,
the reason for this substitution being that the Debye model
assumes particles of one size whilst the sample investigated
has a distribution of particle sizes.

A comparison between τmeas and τcalc was made and is
shown in figure 7.

A contributing factor for the differences between τcalc and
τmeas is the approximation made in the numerical evaluation of
the b(t) (see equation (2)) and of the area under the normalized
decay curve b(t)/b(0).

An additional possible source of differences between τcalc

and τmeas could be effects of interparticle interactions. This
could lead to the formation of aggregates, which would affect
the value of τmeas.

Another cause for the differences between τcalc and τmeas is
the presence of a particle size distribution in the magnetic fluid.
This may be explained as follows. Assuming the magnetic fluid
to be a linear system, for which the superposition principle
applies, its susceptibility is a sum of individual Debye like
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Figure 7. Plot of τmeas and τcalc as a function of polarizing field H for
the sample investigated.

susceptibilities of each particle:

χ(ω) − χ∞ =
∑

j

A j(χ0, j − χ∞, j )

1 + jωτ j
(14)

where A j is the spectral amplitude of particles having the
diameter d j , χ0, j is the low frequency susceptibility of particles
having a diameter d j , χ∞, j is the high frequency susceptibility
of particles having a diameter d j and τ j is their relaxation time.
It follows that the decay or after-effect function, b(t), of the
magnetic fluid is a sum of Debye like after-effect functions:

b(t) =
∑

j

A j b(0) j exp

(−t

τ j

)

(15)

where b(0) j = χ0, j − χ∞, j . In this case, the relaxation
time evaluated from the area under the normalized after-effect
function is

τeff =
∫ ∞

0

b(t)

b(0)
dt =

∑
i A j b(0) jτ j∑

i A j b(0) j
. (16)

ωmax, at which the imaginary part of equation (14) is a
maximum, results by solving the equation dχ ′′

dω
= 0, i.e.,

∑

j

A jτ j(1 − ω2τ 2
j )

(1 + ω2τ 2
j )

2
= 0. (17)

It is obvious that ω = τ−1
eff (where τeff is given by

equation (16)) is not a solution of equation (17). Consequently,
in the case of a system with a particle size distribution, the
relaxation time, τmeas, as determined by means of equation (8)
cannot be equal to the relaxation time, τcalc, obtained by

evaluation of the area under the normalized after-effect
function.

5. Conclusions

The motivation of this work was a wish to determine the
relationship between the area (B) under the after-effect
function of a ferrofluid and its dynamic properties. A simple
model presented shows that the normalized value, B/b(0), was
in fact equal to the Debye relaxation time, τD, for systems with
a single relaxation time. For the theoretical Debye case, a
comparison between τD and τm = 1/(2π fmax) against H , as
given in figure 3, shows them to be almost identical, thereby
confirming the validity of the model.

In the case of complex susceptibility data obtained for the
sample investigated, a discrepancy was shown to exist between
the values of the two relaxation times, τcalc and τmeas. A
factor contributing to this error was the fact that the data were
measured over a truncated frequency range, which resulted in
an inaccuracy in the calculation of the parameter B and hence
in B/b(0); there was also the fact that the Debye model does
not allow for the existence of a particle size distribution, or for
the interparticle interactions.
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